Zebrafish ribonucleases are bactericidal: implications for the origin of the vertebrate RNase A superfamily.
نویسندگان
چکیده
Understanding the evolutionary origin of the ribonuclease (RNase) A superfamily is of great interest because the superfamily is the sole vertebrate-specific enzyme family known to date. Although mammalian RNases have a diverse array of biochemical and physiological functions, the original function of the superfamily at its birth is enigmatic. Such information may be obtained by studying basal lineages of the vertebrate phylogeny and is necessary for discerning how and why this superfamily originated. Here, we clone and characterize 3 RNase genes from the zebrafish, the most basal vertebrate examined for RNases. We report 1) that all the 3 zebrafish RNases are ribonucleolytically active, with one of them having an RNase activity comparable to that of bovine RNase A, the prototype of the superfamily; 2) that 2 zebrafish RNases have prominent expressions in adult liver and gut, whereas the 3rd is expressed in adult eye and heart; and 3) that all 3 RNases have antibacterial activities in vitro. These results, together with the presence of antibacterial and/or antiviral activities in multiple distantly related mammalian RNases, strongly suggest that the superfamily started as a host-defense mechanism in vertebrate evolution.
منابع مشابه
Ribonucleases and angiogenins from fish.
For the first time fish RNases have been isolated and characterized. Their functional and structural properties indicate that they belong to the RNase A superfamily (or tetrapod RNase superfamily), now more appropriately described as the vertebrate RNase superfamily. Our findings suggest why previously repeated efforts to isolate RNases from fish tissues have met with no success; fish RNases ha...
متن کاملRNase A ribonucleases and host defense: an evolving story.
RNase A (bovine pancreatic RNase) is the founding member an extensive family of divergent proteins that share specific elements of sequence homology, a unique disulfide-bonded tertiary structure, and the ability to hydrolyze polymeric RNA. Among the more intriguing and perhaps counterintuitive findings, at the current state of the art, the connection between RNase activity and characterized hos...
متن کاملA new RNase sheds light on the RNase/angiogenin subfamily from zebrafish.
Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low...
متن کاملThe ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories.
The RNase A superfamily has been important in biochemical, structural, and evolutionary studies and is believed to be the sole vertebrate-specific enzyme family. To understand the origin and diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of human, mouse, rat, and chicken. We report a previously unnoticed gene cluster in mouse chromosome 10 a...
متن کاملAncient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals.
Members of the ribonuclease (RNase) A superfamily participate in a diverse array of biological processes, including digestion, angiogenesis, innate immunity, and possibly male reproduction. The superfamily is vertebrate-specific, with 13-20 highly divergent members in primates and rodents, but only a few members in chicken and fish. This has led to the proposal that the superfamily started off ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2007